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Convolution kernel-based non-uniform fast Fourier transform (NUFFT) is an effective image reconstruction
method for Fourier domain optical coherence tomography. By measuring the reconstruction error, a general
method for finding the optimal parameters of the kernel function is investigated. Performances in terms of
point spread function and computation time are evaluated. The NUFFT with optimal parameters yields
signal sensitivity of over 40 dB, with a computation time that is decreased by 85% compared with the
conventional oversampling NUFFT. In vivo images of finger tissue are efficiently reconstructed through
the proposed reconstruction method.
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Optical coherence tomography (OCT) is a high-
resolution biomedical imaging technique, which is capa-
ble of non-invasive imaging of highly scattered biological
tissue[1]. Fourier domain OCT (FD-OCT) has attracted
considerable attention due to the great improvements in
axial-scan (A-scan) rate and detection sensitivity over
time domain OCT (TD-OCT)[2]. Two implementations
of FD-OCT are the spectral domain OCT (SD-OCT)
and swept source OCT (SS-OCT). For FD-OCT, high
quality images can be reconstructed efficiently by fast
Fourier transform (FFT) if the spectral interference sig-
nal is sampled with uniform intervals in the wavenumber
(k) domain. Unfortunately, the signal is not commonly
recorded as that case. In a typical SD-OCT system, the
spectral components of the interference signal are dis-
persed linearly in wavelength (λ) by a diffraction grat-
ing. The non-linear relationship between λ and k (i.e.,
k = 2π/λ) causes the captured spectral interference data
to be unevenly distributed in the k domain. For the
majority case of the SS-OCT system, the spectral in-
terference signal is unevenly sampled in the k domain,
because the k versus time (t) relationship is commonly
nonlinear due to the general tuning mechanism of a swept
source. Direct FFT of this nonlinear-in-k data introduces
significant reconstruction errors that dramatically com-
promise the performance of FD-OCT system in terms of
axial resolution and signal to noise ratio (SNR)[3].

Various approaches have been proposed to resolve
the non linear-in-k issue. Both the custom designed
linear-in-k spectrometer[4] for SD-OCT and k-linear
swept source[5] for SS-OCT have been successfully imple-
mented; however, they are not commonly used due to the
delicate hardware design and increased system complex-
ity. Another hardware-based solution for SS-OCT relies
on the external k-trigger devices[6], which also increase
the total cost of the system, making them inappropriate
for the SD-OCT system. Signal processing approaches
are popularly applied in both SD-OCT and SS-OCT sys-
tems due to their flexibility and interchangeability. Pro-
vided with the relationship of k versus t or λ versus pixel,
the spectral interference signal at uniform k grids can
be re-sampled by various interpolation algorithms. Lin-

ear interpolation[3], zero-filling interpolation[7], and cu-
bic spline interpolation in the time[8] and k domains[9]

have been implemented in both branches of FD-OCT.
Of these, linear interpolation is actually the fastest tech-
nique. However, due to the large interpolation error, lin-
ear interpolation method produces inaccurate reconstruc-
tion results, especially at the deep imaging depth. In
comparison, the spline interpolation algorithm can pro-
duce results more accurately but the computation speed
is still not satisfied.

Non-uniform discrete Fourier transform (NDFT) algo-
rithm is first implemented in FD-OCT by direct mul-
tiplication of the raw-sampled nonlinear-in-k data and
a Vandermonde matrix[10]. Although the NDFT algo-
rithm provides the most exact reconstruction result, the
slow computation speed hinders its real-time application.
Non-uniform FFT (NUFFT) is an approximation of the
NDFT algorithm with much faster processing speed[11],
and has been recently implemented in FD-OCT. Kaiser-
Bessel (KB) kernel[12,13] and Gaussian kernel[14,15] have
been independently used as the convolution kernel func-
tion for NUFFT. The selection of convolution kernel func-
tion is investigated by Chan et al., and the Gaussian ker-
nel function is considered to be a better choice for on-the-
fly data processing[15]. However, the re-sampling ratio for
the Gaussian kernel is limited to at least two, similar to
the traditional gridding method used in magnetic reso-
nant imaging (MRI). In theory, significant improvements
in computation speed can be achieved while maintaining
high accuracy by non-oversampling NUFFT. Therefore,
the two important parameters, namely, re-sampling ratio
and kernel width, should be optimized in order to reduce
computation time further. For large scale data process-
ing, the required memory can also be reduced with ap-
propriately chosen parameters.

In this letter, the Gaussian kernel-based NUFFT with
the optimal parameters (i.e., optimal NUFFT) is investi-
gated. A general approach for choosing the optimal pa-
rameters is presented. For optimal NUFFT, the selected
parameters of the convolution kernel are implemented for
high accuracy signal reconstruction with reduced compu-
tation time. Performances in terms of point spread func-
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tion (PSF) and computation time of various reconstruc-
tion methods are evaluated and compared. We employ
the proposed optimal NUFFT method in efficiently re-
constructing in vivo human finger tissue image so as to
demonstrate its practical performance.

In SS-OCT, the raw spectral interference data are ob-
tained directly by a data acquisition (DAQ) card, and
can be expressed in k space as

I(kn) =
∑

m

√

RrefRs(zm) · S(kn) · cos(kn · zm),

n = 1, · · ·N − 1, (1)

where Rref and Rs(zm) represent the reflectivity of the
reference mirror and the imaged sample, respectively; zm

represents the optical path difference (OPD) between the
sample and reference arm; kn is the wavenumber corre-
sponding to the nth data of the total N data; S(kn) is
the power spectral density of the swept source.

Various reconstruction methods require an accurate
calibration procedure for the swept source due to the
nonlinear-in-k issue. Thus, the wavenumber is regarded
as an a priori known value for all time sampling data
points. The reconstruction methods considered below
are optimal NUFFT, conventional oversampling NUFFT,
NDFT, and spectral phase based k domain spline inter-
polation (KDSI).

The NUFFT is extensively investigated in a MRI field
for k-domain mapping, and is termed as the “gridding”
method. The basic NUFFT algorithm (Fig. 1) consists
of several steps listed below.

1) convolving the nonlinear-in-k spectral interference
data with a convolution kernel;

2) re-sampling the result on a series of linear-in-k loca-
tions;

3) performing a FFT on the re-sampled data;
4) dividing by the Fourier transform of the convolution

kernel function.
With these steps, the NUFFT algorithm can be ex-

pressed as

iNUFFT(m) = FFT

{

N−1
∑

n=0

I(kn) · C(km − kn)

}

·
1

c(m)
,

(2)
where C(k) represents the convolution kernel function
in k space, and c(z) represents the Fourier transform of

 

Fig. 1. OCT signal processing flow chart using NUFFT.

C(k). The variable m represents the depth measure pro-

portional to z. The term
N−1
∑

n=0
I(kn) · C(km − kn) rep-

resents the convolution and re-sampling steps. The re-
sampling grids km are determined by the wavenumber
range (kmax to kmin), total data number N and the re-
sampling ratio α, and is expressed as

km = m ·
kmax − kmin

αN
,

kn ∈ [kmin, kmax], m = 1, · · ·αN. (3)

Given the fast fall-off characteristics of the convolution
kernel function, only a finite number of points have
effective values for reconstruction, whose total number
is defined as the effective width of the kernel. According
to the effective width, a square window function is mul-
tiplied to the kernel function. Only the data within the
effective kernel width must be calculated for convolution,
and the data outside of the effective width are directly
set to zero, as shown in

C(km−kn) =











exp

[

−
(kn − km)

2

(δk)2 · 4τ

]

,
|kn − km|

δk
<

W

2

0, else

,

(4)
where τ represents a shape parameter relative to the
re-sampling ratio α and kernel width W , and δk rep-
resents the constant wavenumber interval between each
re-sampling grid. To optimize the reconstruction accu-
racy, the equation for the optimal value of τ is given
as[11]

τ =
W · π

N2 · 2 · α · (α − 0.5)
. (5)

NUFFT is considered as the approximation of the ex-
act NDFT algorithm. Thus, the intrinsic reconstruction
error by the NUFFT algorithm is defined as

E(m) = |iNUFFT(m) − iNDFT(m)| , (6)

where iNDFT(m) and iNUFFT(m) are the reconstructed
axial profiles by NDFT and NUFFT, respectively, and
m represents the depth measurement.

The evaluated reconstruction error function expressed
in dB is given as

ε =
1

αN

∑

m

|20lg [iNUFFT(m)] − 20lg [iNDFT(m)]|. (7)

The reconstruction error is determined by the Fourier
transform of convolution kernel, which is dependent on
the kernel width W and the re-sampling ratio α.

Computation speed, another key performance, is
largely dependent on the computational complexity of
the reconstruction algorithm. The computational com-
plexity of the convolution kernel-based NUFFT is pro-
portional to O[cWN + αN lg(αN)], where c represents a
constant determined by the complexity of the convolu-
tion kernel, and N is the total number of the raw data
before re-sampling. Thus, in reconstructing the signal as
fast as possible, the re-sampling ratio α and the kernel
width W must be set as small as possible.

In this letter, the optimal parameters were identified
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by evaluating the reconstruction error. The A-scan signal
was processed under an initial value of α and W , after
which the reconstruction error was calculated according
to Eq. (7). Each reconstruction error was added into an
error array. By slightly tuning the value of the parame-
ters until all the parameters considered were tested, all
of the reconstruction error corresponding to the different
parameters were calculated. Then the reconstruction er-
rors array under different values of re-sampling ratio α
and kernel width W were obtained. Given an acceptable
reconstruction error threshold, the optimal parameters
were selected, which also ensured the total data number
after re-sampling be a power of two.

In order to compare the reconstruction performances
of the optimal NUFFT method, two other reconstruction
methods were implemented for the same A-scan data, in-
cluding NDFT algorithm and KDSI algorithm.

The definition of the NDFT of the raw-sampled A-scan
signal I(kn) is given as[10−15]

iNDFT(m)

=

N
∑

n=1

I(kn) · exp

[

−j ·
2π

kmax − kmin
· (kn − kmin) · m

]

,

m = n = 1, · · · , N. (8)

The symbol used in Eq. (8) is the same as that in Eqs.
(2) and (3). Usually Eq. (8) is expressed in the form of
matrix multiplication as follows: i = D · I, where

D =













1 1 · · · 1

p1
0 p1

1 · · · p1
N−1

...
... · · ·

...

pN−1
0 pN−1

1 · · · pN−1
N−1













, (9)

and p = exp
[

−j · 2π
kmax−kmin

· (kn − kmin)
]

.

The computation of NDFT involves O[N2] opera-
tions. Compared with the computational complexity of
NUFFT, the NDFT method is redundant and is not prac-
tical for real-time imaging.

Meanwhile, the KDSI method has been proposed for
SS-OCT image reconstruction with high efficiency[9]. Af-
ter the Hilbert transform of a calibration-used Mach-
Zehnder interferometer (MZI) signal, the resulting com-
plex MZI calibration signal is given as

ÎMZI[tn] = 2S(tn) ·R ·exp(j ·φ[tn]) n = 1, · · · , N, (10)

where R represents a scale factor, d is the OPD between
the two arms in the MZI, tn is the time instant of the
n-th data point, and S(tn) is the spectral envelope of
the swept source. Hence, the N -point k-uniform grids
are obtained from the unwrapped spectral phase of this
complex MZI calibration signal, and are given as

k[m] = m ·
φ[tN−1]−φ[t1]

α · N · d
= m ·

k[tN ]

α · N
, m = 1, · · ·, αN,

(11)
where α represents the re-sampling ratio. Based on the
Eq. (11), the N -point linear-in-k OCT imaging signal
can be obtained according to the αN -point linear-in-k

grids by linear or spline interpolation.
Using the spline function of order m to interpolate

the αN -points data involves a computational complexity
of O[m2αN ]. Then, the KDSI-based data processing in-
volves the FFT of the αN -points linear-in-k data. There-
fore, the total computational complexity of KDSI-based
OCT image reconstruction is O[m2αN + αN lg(αN )].

The custom-designed high-speed SS-OCT system used
in this study has been previously described in detail[9].
The swept laser source covers a wavelength sweeping
range of 110 nm, which is centered around 1310 nm. The
SS-OCT imaging system was configured as a balanced
detection type Michelson interferometer. Of these, 90%
of the output power of the swept source was fed into the
imaging interferometer through a wideband circulator.
The sample beam was scanned by an X-Y galvo-mirror
scanner, and then focused by an achromatic doublet with
the focal length of 60 mm. The lateral resolution was
12 µm according to the optics used in the sample arm.
The OCT signal was detected by the balanced photon
detector and sampled by a high-speed DAQ card. To
overcome the non-repeatability and non-stable effect of
the commercial swept source, an MZI was added into
the system for real-time calibration. The MZI spectral
interference signal was sampled by another analog input
port of the DAQ card.

In order to identify the optimal parameters, a simu-
lated noise-free spectral interference signal was used to
calculate the reconstruction error. The spectral interfer-
ence signal corresponding to a three-layered sample was
simulated to evaluate the signal composite reconstruction
performance from the superficial and deep locations of
the sample. Considering the practical light penetration
depth in biological tissue, depths of 2.5, 3.5, and 4.5 mm
were chosen for determining the optimal parameters.
The re-sampling ratio was set to the 40 values evenly
distributed between 0.5 and 2, and the width parameter
W was set to the 40 values evenly distributed between
0.01 and 6. By slightly tuning the values of re-sampling
ratio α and kernel width W , 1600 reconstruction error
values were obtained for the reconstruction error array.
The red curve represents the simulated PSF signal re-
constructed by the NDFT algorithm, and the blue curve
is by the conventional oversampling NUFFT algorithm
(Fig. 2(a)). The oversampling ratio was set to 2, and
the convolution kernel width W was set to 6. The re-
constructed PSF by NUFFT algorithm is close to that
by the NDFT, thereby confirming the fidelity of the
custom-developed NUFFT algorithm. The values of the
color correspond to the reconstruction error values; in
addition, the conventional parameter pair of α = 2 and
W = 6 has a small error value (Fig. 2(b)). However, for
the smaller re-sampling ratio α, the reconstruction error
could also be decreased by choosing an appropriate value
of W . Especially when α is set to be around 1, the recon-
struction error can be maintained at a low value in a zone
around the width parameter of 2. The reconstruction er-
ror can be relatively low at a narrow zone by further
decreasing the re-sampling ratio, although it would still
gradually worsen. Theoretically, the NUFFT with op-
timal parameters improve the computation speed and
ensure a high quality reconstruction of SS-OCT signal.
This assumption is confirmed through the reconstruction
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Fig. 2. (Color online) Simulated PSF comparison and recon-
struction error arrays obtained by slightly tuning the (a) re-
sampling ratio α and (b) convolution kernel width W .

of biological tissue images in the following section.
The sampling rate of DAQ was set to 50 MS/s, so

that 2048 data points could be obtained for each A-scan.
Due to the duty cycle of the swept source, the raw-
sampled non-linear-in-k data for each A-scan consisted
of 1941 data points. For efficient FFT computation
of the linear-in-k data, 2048 or 4096 points should be
generated. Then, the corresponding re-sampling ratios
should be 1.055, and 2.11, respectively. The kernel width
of the Gaussian convolution kernel is optimized by the
proposed parameter finding method in the previous sec-
tion. Corresponding to the re-sampling ratio α of 1.055,
kernel width W was set to be 2.25. For the conven-
tional NUFFT, the parameters of α = 2.11 and W = 6
were used. The results of PSFs with OPD of 3.2 mm
reconstructed under the two parameter pairs are shown
in Fig. 3(a). The PSF reconstructed by NDFT, repre-
sented as the blue dots, is free from artifacts and has a
low noise level. The PSFs in red dots and green solid
lines are obtained from NUFFT with re-sampling ratios
of 2.11 and 1.055, respectively. The reconstructed PSFs
are identical with that from NDFT. However, for the
conventional oversampling case, oversampling with αN
points introduces the appearance of identical copies of
the spectrum as some levels of aliasing artifact at every
αN frequency interval in the z domain for the FD-OCT
signal. Therefore, extra data points of the reconstructed
depth profile due to oversampling were truncated to pre-
vent the aliasing artifacts into the imaging range[11]. Fig-
ure 3(b) shows the practical used Gaussian convolution
kernels at an arbitrary wavenumber position correspond-
ing to the optimal and conventional cases. The effective
numbers of points used in the convolution kernel were
3 and 12, respectively. According to the reconstruction
error equation, for the oversampling NUFFT case, the
reconstruction error is 5.51, and the error for the op-
timal NUFFT case is 5.67. Meanwhile, the number of
data points for FFT is decreased to 2048 points from
the oversampling case, where 4096 points are processed.
Therefore, a comparable reconstruction result is main-
tained with less computation required.

In order to evaluate the performance of the presented
optimal NUFFT method in the comparison of the NDFT
and KDSI methods, the spectral interference signal corre-
sponding to several depths was measured with a reflective
mirror as the sample. The PSFs reconstructed from the
optimal NUFFT, KDSI and NDFT methods are shown
in the Figs. 4(a), (b) and (c), respectively. Each graph
presents the PSFs measured at positions ranging from

0.1 mm to 4 mm relative to the zero optical path length
difference. The result reconstructed by the proposed
optimal NUFFT method provides the accurate signal
compared with those by the NDFT method. For clear
comparison, the intensity of the PSF decreasing curve,
often called the sensitivity fall-off curve, is depicted in
Fig. 4(d). We can see that the optimal NUFFT method
provides sensitivity, which is close to that by NDFT
method, but the KDSI method provides the relatively
lower sensitivity signal, especially at the large depths.
The different performances of the three methods for the
large depths possibly result from the relatively large in-
terpolation error during the process of convolution or
spline interpolation to the high frequency spectral inter-
ference signal. The convolution-based method results in
relatively small error compared with spline interpolation.
The SNR of the SS-OCT system at the effective imaging
range is also experimentally confirmed to be higher than
40 dB (Fig. 4(a)).

In order to evaluate and compare the computation
speed of the optimal NUFFT method with the conven-
tional oversampling NUFFT, NDFT and KDSI methods,
the spectral interference signal was post-processed using
these reconstruction methods. The processing times were
measured by a custom-designed MATLAB

R©
program.

Table 1 presents the computation time of the different
methods. The program was run on a computer with an

Fig. 3. (Color online) (a) PSF reconstructed by NDFT, con-
ventional oversampling, and optimal NUFFT, and (b) their
corresponding convolution kernels.

Fig. 4. (Color online) PSFs reconstructed from the optimal
(a) NUFFT, (b) KDSI, and (c) NDFT methods, and (d) their
respective sensitivity fall-off curves.
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Table 1. Computation Time (µs) for Each
1941-Point A-Scan from Various Reconstruction

Methods

Method
Oversampling Ratio α

1 1.055 2.11

NDFT 1039

NUFFT
W = 2.25 6.59

W = 6 22.1 42.7

KDSI 119

Intel Core i5 processor (2.53 GHz) and 2 GB RAM. The
data processing was realized on a single thread comput-
ing, but further enhancement of computation efficiency
can be achieved through parallel computing by employ-
ing multi-thread processing.

Due to the computation complexity of O[N2] of the
NDFT method, the measured computation time for the
case of NDFT is 1-order of magnitude larger than that
of the KDSI method and 2-order larger than that of the
NUFFT methods, thus confirming the impracticality of
NDFT for real-time OCT reconstruction. The KDSI
method is a faster approach compared with the NDFT
method. However, signal inaccuracy due to the spline
interpolation decreases the reconstruction accuracy, and
the computation speed is still slower than NUFFT based
methods. The computation time for one 1941-point
A-Scan by the optimal NUFFT with α = 1.055 and
W = 2.25 is 6.59 µs (Table 1). In contrast, the conven-
tional oversampling NUFFT with α = 2.11 and W = 6
needed 42.7 µs to process the same raw data. This indi-
cates that the computation time of the proposed method
is reduced by 85% compared with the conventional over-
sampling NUFFT method. Meanwhile, the data storage
space needed for the optimal NUFFT method is less than
that of the other methods, which is advantageous when
a large scale data set is processed with high computation
speed.

The performance of the optimal NUFFT method is fur-
ther evaluated for in vivo SS-OCT image reconstruction.
The reconstructed OCT image of human fingernail fold
tissue is presented in Fig. 5, where (a), (b) and (c) cor-
respond to the images reconstructed by the NDFT and
the optimal NUFFT and KDSI methods, respectively.
For the optimal NUFFT method, 2048 re-sampled data
points corresponding to the re-sampling ratio α of 1.055
and convolution kernel width W of 2.25 were processed.
The image was converted to logarithm scale before map-
ping to gray scale value. The image clearly shows the
tissue structures, such as epidermis (E), cuticle (C), nail
plate (NP), nail bed (NB), and dermis (D). Very good
results are obtained by the optimal NUFFT, which shows
comparable image quality with that by NDFT. As shown
in the two red square boxes in Figs. 5(b) and (c), the
optimal NUFFT offers superior sensitivity performance
compared with the KDSI method, especially at a large
depth. This is in agreement with the results of the PSF.
Furthermore, the optimal NUFFT has much faster com-
putation speed, which optimizes the trade-off between
image quality and computation time.

Fig. 5. (Color online) SS-OCT images of human fingernail
fold reconstructed by (a) NDFT, (b) optimal NUFFT, and
(c) KDSI methods.

An optimal NUFFT method with Gaussian convolution
kernel is evaluated for fast and accurate FD-OCT im-
age reconstruction. A general kernel parameter finding
method is introduced. For an optimized convolution
kernel function, the parameters are finely tuned and
chosen to allow an acceptable level of low reconstruction
error. The performance advantage of the proposed opti-
mal NUFFT is experimentally confirmed by evaluating
the PSFs obtained from a custom-built SS-OCT system.
Several typical methods, including the NDFT, KDSI,
and the conventional oversampling NUFFT methods are
implemented for performance comparison. The optimal
NUFFT with a re-sampling ratio α of 1.055 and kernel
width W of 2.25 provides good results with the compu-
tation time decreased by 85%. Finally, in vivo image
reconstructed with high quality is demonstrated by the
reconstruction methods, which thus confirming the fea-
sibility of the proposed method.
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